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1. Introduction

Factorial experiments in which the additive model applies have received

special attention in the applied literature because of the simplicity of
their analysis and subsequent interpretation. However the recent emphasis
in the life sciences on synergism and antagonism (see e.g. Rothman (1974))
have served to highlight the importance of experiments in which interactions
are not merely nuisance parameters but the quantities of primary interest.
This point of view suggests a number of interesting problems. For example,

Neymann (1977) describes a class of multiple comparison problems for

determining synergistic effects. This paper pursues a slightly different
approach and considers the problem of selecting the treatment combination

in a two factor experiment with both factors qualitative for which the
corresponding population interaction is a maximum. The problem was introduced
by Bechhofer et al. (1977); they give a detailed analysis of the 2xc case (two
levels of the first factor and c¢ levels of the second factor).

The present work expands their study by considering the design problem for

arbitrary rxc experiments when the 'matural" procedure based on the sample
interactions is used.

In Section 2 the model is introduced and the design requirement is
stated for the problem. In Sections 3 and 4 the infimum of the probability ]
of correct selection is studied by reducing the problem to a nonlinear
programming problem. The example of designing a 3x4 experiment is studied

in Section 5 and the last section considers an alternative (strengthened)
RSN
version of the design requirement. ﬁ:‘
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2. Model and Design Requirement

A two-factor experiment, with both factors qualitative, is to be
performed with the first factor being studied at r levels and the

second factor at ¢ levels. The usual fixed-effects linear model is

assumed so that observations Yljk (ki e fJeig, 1% k% nl
are independent and normally distributed with means Einjk] = uij z
wot Qi + Bj + Yij where % ai = % Bj = % Yij = % Yij = 0 are the usual

~ ~

identifiability constraints and Var(Yijk) = g” <=, Here 0~ 1is assumed
known but the “ij are unknown. This paper considers the problem of

designing an experiment to select the largest (algebraic) interaction. Let

Tpags o SV e}

denote the ordered values of the {Yij}' It is assumed that the experimenter
has no prior knowledge of the pairing of the Y(e 1 1 <2 <rc and the

Yij' The goal is to select the treatment combination associated with

Y[rc]' Initially the indifference zone formulation of Bechhofer (1954)

will be employed and attention will be restricted to procedures which

satisfy the following probability (design) requirement:
(2.1) PR'ECSJ > p*

whenever Yire) > 4% and Yire]l * Tive<i) > §% where the event [CS]
occurs iff the treatment combination corresponding to Y[rc] is selected

(r-1)(c-1)

1] 33
' Tret o)y 0« &

and the constants &%, A®* and P* satisfy 0 < &%

and i< P%* < 1.
re




Intuitively (2.1) requires that a correct selection occur with high

probability only when both (a) Y[rc] and \[ are sufficiently

rc=1]
far apart and (b) y is sufficiently positive. When =

[(re] [re]
the additive model holds. The exact choice of §%, A% P® depends on
economic considerations and is not Jdiscussed here. The restrictions on
the &% and A"™ values are required for there to exist (Yij} matrices

which satisfy the conditions of (2.1) i.e. for the problem to be nonempty.

The following "natural" procedure, P, based on the BLUE's, v

$4°
of the Vij will be employed.
P. Take n observations on each treatment combination and
compute y., ¥ Y., - g -y + Y Clh € 52 Bk % {4 € =)
P lj ij. Lo .j. “en =y - ol o

where a dot replacing a subscript indicates an average has
been computed over the elements for that subscript. Select

the treatment combination producing

Yepe) max(yij: l<i<r,1<Jc<c} as the one
associated with Yerel®
Given 2 <r <¢, 3 <c¢ and (§%,a%P%), our problem is to find

the smallest value of n which will guarantee (2.1) when P is used.

Remark 2.1. While procedure P is intuitively appealing, its optimality
properties are unknown. In particular it is interesting to note that a

most economical property for P and its other decision theoretic properties
cannot be determined from the works of Hall (1959), Eaton (1967) and

Lehmann (1966) since the joint distribution of the ;i is singular.

i
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3. Infimum of the Probability of a Correct Selection

As the first stc> in determining the minimum sample size to achieve
(2.1) an expression will be derived for the probability of a correct

selection (PCS) when using P for arbitrary true e

P [CcS|P] = Py, > iab ¥ (a,b) # (1,1)]

4 o -
(3.1) * @l ]l Gy - gaee Breavngs s
B e B
s, s iy Yoz %05 2 b LS o
122 sz %7 4m2 M
r e . > .
3 ‘. 0
122 Zz i * léz ¢ odtiiat bl A
. p ¥

since the ;ij sum to zero over rows and columns

{3.2) * PLE » y <] Efn(l)’ say, where

(3.3) Xij * gij - Yiy (Lzd<sr, 1<1xe),
(3.4) P ¢ R A TR SR P

(a.%) x' = (Y22""’Yrc) and

C 1is a convex cone defined by (3.1) of the form {w ¢ R(P'l)(c-l)lAw >0 X

has a nonsingular (r-1)(c-l) variate normal distribution with mean

vector zero and covariance matrix | given by

R —— e e i it i T




(3.8)

where J. = (07:) and i (oij) are (c-1)x(e-1) matrices with

(r-1)(c-1)/ren i = j

- 1l
(3 I) g, =
i ~(r-1)/ren 149
and
-(c-1l)/ren i = j
(3.8) o?. =
1]

1/ren i#43

and each row and column of z contains (r-1) blocks of ) 's.

So the PCS depends on u only through X and can be written as
Y

fn(l) : P[,L\' € c-x{]
(3.9)

| K exp{- %iﬁ'z-lii}dﬁ
C-y

-(r-1)(ec-1)/2 -l/2

where K = (2m)

[det(])]

Remark 3.1. It can be easily checked from (3.1) and (3.2) that fn(l)

is constant under row and/or column permutations of the matrix
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formed from the vector 3

The design requirement (2.1) will be satisfied if n is the smallest
0

- . - T 0 :
integer satisfying £.0X ) > P* where Yy = Yy (n) 1is chosen so that
R v N

(3.21) £ (yJ) = min £ (y) and
v n

n Y-:F
N

F = F(r-1,c-1,3%,4%) is the convex polytope given by

22° " "T2c 3
X = : € R(P‘l))‘(C‘l) E S x' > .\*,
S5 2
Xope e X
YFlm, =%, 8% S ca<p, 2 ¢tb ey
i3 ~ *ap = lacz ==z
i]
T
L Z X5+ Z N §%, 2 <& <1y
1] ]

In the above notation row and column labels (a and b) run from 2 to
and 2 to ¢ vrespectively thus preserving the analogy with (3.10). The
indices i and j range from 2 to r and 2 to ¢ respectively.

A solution 13 to the nonlinear programming problem (3.1l) is called the




least favorable configuration (LFC) since it represents the worst case
the experimenter must design against.

Since the multivariate normal density is log concave and the
expression (3.9) for the PCS only involves t as a location parameter
in the domain of integration, it follows directly from the preservation
thecrem of C. Borell (1973) (see also Rinott (1976)) that fn(l) is also
log concave in L Hence for YyaYo € F and 0 <a <l

£f (ay, + (l-a)y.) > {f (¥.)} By o Y
3 % | 12 - n 11 n 2 n al n a

)} and so the LFC

must occur at an extreme point of F.




i A A 0 A A L RN R A . 0 440

4. Extreme Point Analysis

First note that F(r-1,c-1,8%,4%) is given by

vl IX(A=
%a R(. 1)x(c l)iT T - §% > AR/§.
e i el e A
3 3 -
S E xiiJS* - xabfd* PR, 2SR P2 ED %o
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and hence F(r-1,c-1,8%,a%) = §%.F(p-1,c-1,1,A%/8%) where if a is a
scalar and S < =% then a'S = {ax|x ¢ S}). So it suffices to determine
the extreme points of F(r-1,c-1,1,4%) in order to solve the extreme
point problem for general F since x% is an extreme point of
F(r-1,c-1,3% A%) &> x*/§% is an extreme point of F(r-1l,c-1,1,A4%/8%),
Next note that corresponding to each extreme point x® of
F(r-1,c-1,1,4%) there are (r-1)!(c-1)! row/column permutation versions
of x* all of which are also extreme points of F(r-l,c-1,1,4%) since
F(r-1,c-1,1,4%) is row/column permutation invariant. Now from Remark 3.1,
fn(l) is constant over each row/column permutation version of 1 and

0 .
hence the LFC y  must be one of the points of the subset
v

F' = F'(r-1,c-1,1,4) of F given by

and x

"

| v
Fd
v
v
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-

(4.1) {x « le,z > X
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Here B3 and Kk are of dimensions (rct+r+c-4)x(r-1)(c-1) and (rc+r+c-4)xl
respectively.

One final simplification of the problem can be made. Choose P
orthogonal so that PZP' is diagonal with entries the eigenvalues of Z,

say Then after the change of variables y = Px, f (y)
0 A

Xl""’x(r-l)(c-l)'

becomes

1 (r-1)(c-1) 2
(4.2) £(y) = [...[ Kexp(- 5 ) Ayspdy
2 A \:"PY & i=l : gk & A
v
5 and C' = {w ¢ R(r’l)(c-l)]AP'w 4 0}. Problem (3.11) reducss to determining

YD so that
v

2 0 5 %
(4.3) £ (y ) = nin £ (y).

N A YéF' n

N

For moderate r and ¢ there are several efficient algorithms
available for computing the entire set of extreme points of F' such as
Balinski (1961) and Chernikova (1965). These algorithms systematically
select a subsystem of the defining inequality system Bx > b, solve it
in equality form, check the resulting solution for feasibility in the
original system and then pivot to a new subsystem. There is an alternative
method for determining the extreme points of F' based on some ideas
from graph theory. It will be illustrated in the next section where the
complete solution to the extreme point problem is determined for the 3xu
case for arbitrary &% and A%.

While the enumeration of the extreme points of F' is always

computationally feasible, the same cannot be said about evaluating the
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objective function fn(l)' The expression (4.2) for fn(l) requires

an (r-1)(c-1) dimensional integration over the convex polytope, C'-Px.

In the 3x4 example of Section §, fn(z) is approximated by a simulation
technique based on its probability interpretation (3.1). In summary,

until quadrature or other techniques are developed for accurately evaluating
high dimensional integrals over arbitrary convex domains, the limiting
factor in the implementation of the results of this paper will be the

computability of £ (y).
n o~
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5. An Examgle

In Bechhofer et al. (1977) a detailed study is made of the design problem

for 2xc experiments; closed form expressions are obtained for the extreme

points of F'(l,c-1,8%,4%) for arbitrary &%, A® and c. In addition the |
iIx3 case was analyzed. Tables of the sample sizes required to implement

P for 2x3, 2x4 and 3x3 experiments are contained in Bechhofer and Santner
(1978).

The design problem will now be studied for the 3x4 experiment for
arbitrary &% > 0 and A% > 1.26®. First the extreme points of F'(A®) =
Fre2,3,1,4%) over A% > 1.2 must be determined. Since it is desired to
leave A% arbitrary, the algorithms mentioned in Section 4 cannot be used
to solve the problem. Instead the following two-pronged strategy will be

used. First the set of extreme points of F'(A%) above the face ) J x A%
i

iy °

will be determined and then the set of extreme points of F'(A%) on the face

2> o

Y1 Xi = A% will be determined.

The extreme points of F'(a%) satisfying E z Xpg o A® can be found
G ‘

by computing the vertices of F'(2,3,1,1.2). Now F'(2,3,1,1.2) < F'(a™

x.. * 4®

since A% > 1.2 and hence every vertex of F'(2,3,1,1.2) with {

Y

v
o
i
will be a vertex of F'(A®) above the face plication of

X,, = A®. An ap
J

-

N

)
i

Balinski's algorithm yields:

e

Z X = 1.5 and
j

e
“
=
e




Hence for 1.2 < A%

| A

while for 1.5 < A%

I A

finally for 2 < A% <

Next the set of extreme points of F'(A%) on the face )

will be found. The analysis of F"(a%) = F'(a%) n {x < R

.
LV

1.5 both (5.1) and (5.2) are extreme points of F'(a%)

ro

only (5.2) is an extreme point of F'(A%) and
= neither (5.1) nor (5.2) is an extreme point of F'(A%),

I x,, = a0
0 e
..‘<3}Z z At}

e
1)

is more easily conducted on its isomorphic image, T, under the transformation

¢ given by

(]
r

/," A A%-1 Av-1 A:‘:_l\
*23 *au (

o
—_—

A%-l A%l Ak-l A¥%-] |

X X
e \\?*-l af-1 4%l A*-l//

iu
s ! 23 %2 23 X2y
i szj 32 *33 X34

It can easily be seen that T is given by
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T 1is a translation of the zero row/column sum version of F"(A®). Furthermore

it is easy to check that x¥% is an extreme point of F"(A®) if and only if

¢(x®) 1is an extreme point of T. Now T 1is a (row/column permutation version

of the) face of a transportation polytope. Transportation polytopes occur

as the feasible regions of transportation problems and their structure is

well known. In particular the following graph theoretic characterization of

the extreme points of T will be required below (see Klee and Witzgall (1968)).
A loop of x € T is defined as a sequence of nonzero entries in x

such that (1) the row and column indices change alternately in the sequence

and (2) the first and last elements of the sequence are the same but otherwise

there is no repetition.

Theorem S.1. A point x ¢ T is a vertex if and only if x contains no loops.
Furthermore T is of dimension 5 in the 3x4 case and hence every vertex

of T must contain S5 zeroes in addition to X, ° 0. There are 462 possible

ways of placing the 5 zeroes among the ll remaining positions and a systematic

search through these candidates shows that the following elements of T

contain no loops:

0 3(a%-1) 3(a%®-1) 3-24%"

(5.3) bak-y 0 0 0 y 1.2 < 4% < 1.5
2-A% 0 0 54%-6
0 3(a%-1) 0 A%
(5.4) 4(a%-1) 0 0 0 » 1.5 <4 <2
A%-1 0 3(a%-1) 24%-3




4

o
’, 0 3(a%-1) 0 A ‘\\
(5.5) | 281 0 0  2a%-3 |, a%> 1.8
\\\A*-l 0 3(a®-1) 0 /
- N
0 34%-3 A% 0
(5.8) | 3a%-2 0 0 A%-2 E, A > 2
\ 0 0 28%-3 2A*-1/‘/
/o st o st O\
(5.7) ( 34%-2 0 0 A%-2 1, A% > 2 and
L S 0 k-3 A%l /
~
/0 sl a2 0
(5.8) ! 0 0 a®-1 38k |, A% > 2,
\\3f*-2 A%-2 0 0

The complete set of vertices of F'(A%)

(5.1) and/or (5.2) which are in

Frak)

consists of (a) those point(s)

together with (b) the inverse

images under ¢ of those points (5.3)-(5.8) satisfying the 4® condition.

The results for general F(2,3,8%,4%)

can easily be obtained from those

for F'(A). The full set of extreme points of F'(A) are stated below

in their familiar 3x4 form where rows and columns sum to zero:

I. 1.28% < A* < 1.58%: LFC is one of

[2s% 2sr st g 1.56%  -g% g% 5w

-38% &% §¥% S or -1.56% .58% .58% ,58% or

§* §* -28% 0 0 JS58%  58% g




e et

II.

III.

IV.

V.

A% 28%-2p%
36R-3a%  pR-gR
24k-38% Ao

A% = 1.58%: LFC is one of
5k -26% gk g
-34% § § §
§# §%® -28% 0
Y,
1.58% < A% < 28%: LFC is one of
26%  -28% gk g
-38% s §* &% or
S §%  -248% 0
//’ A 26%-24%
36%-3a%  AR-g®
24%-348% A-8%
A® = 28%: LFC is one of
28%  248% sk -§%
-28% &% §% 0 or
0 G L28% &%
A% > 28%: LFC is one of

AR 26%-24%
36%=3a%  pk-gh
24%=38%  pRagh

28%-24%
A8k

A4S

3A%-ud®
At gt

S58%-LAR

P
1.58%  -§%

-8%
or | -1.58% .58% ,58%
0 .58% , 58%
//A* 26%-2p%  pAv_g
~A%  ARLgR A= §e
0 A%-§%  26%-24%
Av-8% -0
Ave-g A%=§% ;
26%-2A%  28%-pN

28%  -26% g%

~38%

Sn

Av=§%
A%

28®=24%

Y
S §® 8%
§%  -26% 0
-5%
A%-§* |op
28%k-p%

15

.58%

LS58% ),

-§
28%-A% | opr

A%-§%




A%

§#-2

At-§

\

[

§%-2

A®-§

// A%

A%-§

§%-2

After making the
to check that £ (y)
n A

where X' = (X22,X23,X

P is an orthogonal ma

26%-24% 58 abg
A Af-§ A8 s or
% A¥e-§% 28%-A%  -p% )
S
26h-2ak  ARegh  gh
A% A%-§% Afi-§ §% \ or
* Ak-§k  2§%-24% /;
-
SHog - A*-G*‘\\
& 0 Af-g® 2g%o2ak |
/
A% A%-gH 8 A*-G*-// ¥

change of variables described in Section 4 it is easy

can be written in the form P[A(P% + Y12n/o0y) > 0]
2 -

} -
200X %330%50) v NGLQaTgds X' = (vppa¥p3a¥oysY30sY330 Y5y

trix satisfying

and

),




For anv fixed R 3 A%/8% > 1.2 the extreme points of F'(2,3,8%,4%)

listed in I-V can each be written in the form &%.v(R) where V(R) is a
6x1 vector whose value is independent of &%. For example the three extreme
points of I are: 6é%.(1,1,1,1,~2,0), &%*.(.5,.5,.5,.5,.5,-1) and
§*.(R-1,R-1,R-1,R-1,R-1,5-4R) respectively. Hence for fixed R the PCS
evaluated at extreme points &%.u(R) is f(8*.p(R)) = PLA(PX + Y12n 8*/op(R)) > 0]
which is a function of the scalar quantity vn 6%/0. A short table of vn §%/c
values was constructed for various P* and R pairs (1.2 < R < 1.5) by
(a) determining the zero of h(vn §%/g) = fn(é*-x(R)) - P* for each candi-
dates LFC 6*-3(R) listed in I and (b) choosing as the true LFC that point
having the largest vn §%/0 value associated with it. That largest va */¢
value was recorded in the table for the P%, R coordinates. The values
of PLA(PYX + Y12n §*/g-v(R)) > 0] where approximated by Monte Carlo simula-
tion; vectors of six iid N(0,1) random variables where generated and the
set of inequalities in the above event were tested yielding a Bernoulli trial
with the above "success" probability. The zero of h(/n 8*/0) was evaluated
by a Robbins-Monro type of stochastic approximation scheme.

It was determined that for fixed vn 6%/0, P[A(PX + vY12n §%/0-y(R)) > 0]

is extremely flat in R over (1.2,1.5); furthermore the same point,




§%.(1,1,1,1,-2,0) was the LFC in all cases studied. Hence the following

table gives values of vn §%/¢ which are accurate for the entire range

1.2 < R = A%/8% < 1.5 for each listed P* value.

p*
\‘\\\\ .90 .95 .99

/n 6*{ 1.99 2.35 2.66
(o}

The values listed have been rounded off from 3 place computations and should

be accurate to two places. These computations were carried out on

Cornell University's IBM 360/168 computer.




6. Preferred Population Formulation

This section describes the preferred population formulation of
Fabian (1902) for determining the sample size to be used with procedure
P. This formulation is a strengthening of the indifference zone
requirement (2.1) (see Fabian (1962) and Panchapakesan and Santner
(1977)).

Fix 3% and A" as in Section 2 and call the population
| interaction Yij (or treatment combination (i,j)) preferred (or near

optimal) iff either (a) Yire] < A% or (b) Yeve] 2 A* and ¥ii * Y[rc]—éﬁ'

G ]
The goal is to select any treatment combination having a near optimal
‘ Yij' Let Q be the space of all rxc matrices with row and column
1
: sums equal to zero and P*® ¢ (l/rc, 1). The probability (design) require-

ment to be guaranteed is

(6.1) PICS[PI>p* Vyen
v

where the event [CS|P] occurs iff a preferred treatment combination is
selected.

Let ﬂz, 1 <% <rc be that subset of @ in which exactly & {

yij's are preferred. Some Qi's may be empty, however it can easily be

shown that Q

%® = : .
ba 2 Ty e n|y[Pc] < 4*} and Q {1 € Qlytrc] > A%

Yipe] = Y[pe-11 2 S*}. Since PIECS'P] =1V Y € Q. it suffices to

compute %nf Py[CS|P] for i¢1 = {(1,...,rc=1} 1in order to determine
R 4

inf pytcslP]. For i ¢ 1 define

(% v

e PO P PSS S —




R T T T

E.(y) = [max{X + RO S :
1 ¢ (rc) "[re])? *(re-itl) \[rc-x+l]}
> max{X o A s S }]
Ype-1)Vre-11 M)
where X T A and vy is the sample interacti having
Whel () ‘) Y[C} Y(a) S sampl action ha g
mean  ypoq. Note that P [CS|P] = P[(E.(y)] v y < Q. and the avents
ki N i
h§ .
E,(y) are nondecreasing in i for fixed v.
- A\

v

Remark 6.1. Requirement (5.1) implies that PEE (DY > P ¥y e R,
—————————. — > 4 - AW

which is (2.1) and hence (6.1) is a strengthening of the indifference

zone approach.

Theorem 6.1. inf P _[CS|P] = min inf P [E,(y)] = inf P[E (y)] and hence
BT N idq, { 1% g L%
R 1

the same sample size achieves both (2.1) and (6.1).

Proof. Given i, 2 < i < r¢, it follows that the ordered components of

Y o R 1o >y -8 >
[rc] - — [rc-i+l] [re] -

I S <Y -8
[rc-i+l] = "[re]

and increasing the components Y[l]""’Y[rc i] to preserve row and

y ¢ R, satisfy Y[rc] > A* and

> > .
Y[rc-i] & v A2 Y[l]' By decreasing Y[ to

rc-1i+1]

column sums equal to zero it can be seen that there exists 1‘ = 1'(

satisfying Y[ll = Yﬁl]’ re=itl € £ < rc and ¥ il Y[Q], 1 <& < pe-i.

(]

This implies E,(y) ® E.(Y') and hence V y ¢ Q,
i‘a i'n N i

PIE,(¥)] 2 PLE;(y")]

| v

; :
P[Ei-l(l )] since E,_

i l(){') € E. (YY)

3 &

> i 1> M i toe A,
> ;zg. PL l-l(N)] since 1 S
I 2 3

= inf P[Ei(r)] > inf P[E:i l(g)]. 2 <i<rec and the result follows by induction.
XY - . -

Ri ni-l
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